THE PREDICTION OF ²⁹Si-H AND ¹³C-H COUPLING CONSTANTS IN SUBSTITUTED SILANES AND METHANES

M. A. JENSEN

The Chemical Laboratory, University of Sussex, Falmer, Brighton (Great Britain) (Received September 13th, 1967)

In a recently published paper¹ we have used the Pople-Santry method² of calculating coupling constants in a study of substituent effects on directly bonded ²⁹Si-H and ¹³C-H couplings. The calculations which we have made account for the quadratic nature of the additive substituent effects in silanes³ and methanes⁴ in terms of one parameter α_X for each substituent X. It was shown that the M-H coupling constant J(MHXYZ) in MHXYZ (M = ²⁹Si, ¹³C) can be expressed:

$$J(MHXYZ) = J(MH_4) + A \cdot (\alpha_X + \alpha_Y + \alpha_Z) + B \cdot (\alpha_X^2 + \alpha_Z^2 + \alpha_Z^2) + C \cdot (\alpha_X \cdot \alpha_Y + \alpha_Y \cdot \alpha_Z + \alpha_Z \cdot \alpha_Z)$$
(1)

For silanes the constants A, B and C were found to have the values:

$$A = 18.26 \text{ cps/eV}$$
 $B = 1.78 \text{ cps/eV}^2$ $C = -2.98 \text{ cps/eV}^2$

whereas for methanes the values are:

$$A = -8.28 \text{ cps/eV}$$
 $B = -0.21 \text{ cps/eV}^2$ $C = 0.78 \text{ cps/eV}^2$

The value of α_X —the Coulomb integral or effective electronegativity of the group X—can be determined, using eqn. (1), from the M–H coupling in any X–M–H fragment. The coupling in MHXYZ can be used to determine α_X , provided α_Y and α_Z are already known. In the simplest case, α_X can be calculated from the coupling observed in MH₃X. Eqn. (1) then reduces to:

$$J(MH_3X) = J(MH_4) + A \cdot \alpha_X + B \cdot \alpha_X^2$$
 (2)

the value of α_X falling within the range -4 to 1 eV.

If the coupling is known for either of the compounds MH₂X₂ or MHX₃ the appropriate eqns. are:

$$J(MH_2X_2) = J(MH_4) + 2A \cdot \alpha_X + (2B + C) \cdot \alpha_X^2$$
 (3)

and

$$J(MHX_3) = J(MH_4) + 3A \cdot \alpha_X + (3B + 3C) \cdot \alpha_X^2$$
(4)

It is clear that slightly different values of α_X will be found from the couplings in each X-substituted silane or methane which may be chosen for a calculation based on eqn. (1). To avoid ambiguities of this nature, it is possible to consider any or all of the available couplings in X-substituted compounds. α_X may be adjusted to give the best possible "least-squares" fit to these measurements. We have found that the

most convenient compromise, between choosing one compound arbitrarily and using all the available measurements, is to consider the couplings in MH_3X , MH_2X_2 and MHX_3 . α_X is chosen to give the best fit to these couplings, using eqns. (2), (3) and

TABLE 1 values of α_X for various substituents X in Silanes and methanes (in eV)

X	x_{χ}^{α}		X	x_{χ}^{a}
	Silanes	Methanes		Silanes
F	- 2.67	- 3.57	OSiH,	-1.76
Cl	2.50	2.88	NMe ₂	-0.51
Br	~ 2.53	-2.83	Ph	0.10
į.	~ 2.04	-2.93^{h}	Me	0.36
OMc	-1.49	-2.13		

[&]quot; z_X is chosen to give the best fit to the couplings in MH₃X, MH₂X₂ and MHX₃. Chosen to fit the couplings in CH₃I and CH₂I₂ only, since the coupling in CH₃ has not yet been reported.

TABLE 2
PREDICTED AND OBSERVED COUPLINGS J(29Si-H) IN SILANES (in cps)

Compound	J (predicted)*	J(observed)	Source
SiH.	- 202.5	-202.5	5
SiH ₃ F	~ 238.5	- 229.0	5
SiH ₂ F ₂	-295.9	- 282	5
SiHF ₃	374.4	-381.7	5
SiH ₃ CI	~ 237.0	-238.1	5
SiH ₂ Cl ₂	- 290.2	288,0	5
SiHCly	~ 362.1	- 362.9	5
SiH ,Br	- 237.2	- 240.5	5
SiE Br 1	- 291.0	- 289.0	5
SiHBr,	- 363.7	-358.2	h
SiHJ	- 232.3	240.1	5
SiH,I,	-274.6	-280.5	5
SiHI,	~ 329.3	- 325.1	6
SiH ₃ (OMe)	~ 225.7	-216.2	7
SiH ₂ (OMe),	255.5	- 247.6	6
SiH(OMe),	~ 291.7	- 297.9	6
SiH ₃ (OSiH ₃)	-229.2	-221.5	5
SiH ₂ (OSiH ₂) ₂	~ 265.1	256.6	6
SiH(OSiH ₃),	~ 310.3	- 316.0	6
Sill _A (NMe ₂)	~211.3	~205.7	6
SiH, (NMc,),	~ 221.0	- 217.6	6
SiH(NMe ₁),	~ 23L3	- 235	6
SiH, Ph	- 200.6	199.4	٨
SiH Ph,	198.7	- 197.6	ě
SiHPh.	~ 196.9	198,0	<i>*</i>
Sill Me	195.6	- 194.2	8
Sill, Me,	189.1	 ₹88.6	9
SiHMe.	183,0	~ 184.0	9

^{*} Predictions based on eqn. (1), with α_N values from Table 1. Present work.

J. Organometal. Chem., 11 (1968) 423-427

(4). The values which we have found in this way for nine common substituents in silanes, and five in methanes, are shown in Table 1.

Tables 2 and 3 show the observed and calculated couplings in the mono-, diand trisubstituted silanes and methanes which were used to determine the α_X values given in Table 1.

TABLE 3 PREDICTED AND OBSERVED COUPLINGS $J(^{13}C-H)$ in Methanes (in cps)

Compound	J (predicted) ^a	$J(observed)^b$	
CH ₄	125	125	
CH ₃ F	152	149	
CH ₂ F ₂	189	185	
CHF ₃	236	238	
CH ₃ Cl	147	150	
CH ₂ Cl ₂	176	178	
CHCl ₃	211	209	
CH ₄ Br	147	152	
CH ₂ Br ₂	175	178	
CHBr ₁	209	206	
CHJ	148	151	
CH ₂ I ₂	177	173	
CHI	213		
CH (OMe)	142	140	
CH,(OMe),	162	162	
CH(OMe),	186	186	

[&]quot;Predictions based on eqn. 1, with $\alpha_{\rm V}$ values from Table 1." Experimental measurements from (cf. 6)

 α_X values which have been calculated by the method outlined above, or, less reliably, by using the coupling in a single X+M-H fragment, may be used to predict the couplings in other compounds. The values of α_X etc. are substituted into the general eqn. (1), α_H is, of course, zero. In order to test the accuracy of prediction which is to be found when the α_X values have been determined by the method suggested here, we have calculated M-H couplings for compounds containing more than one of the types of substituent listed in Table 1. Since the discrepancies between prediction and observation are generally larger for silanes than for methanes (compare Tables 2 and 3), we have chosen to study the results for silanes over a series of twenty compounds, but those for methanes over only four compounds. The prediction of the silane couplings is a rigorous test of the method. The calculated and observed couplings for silanes are shown in Table 4, and those for methanes in Table 5.

The standard deviation between prediction and observation (making no allowance for experimental error) in Table 4 is 2.3%. This is a satisfactory result for a method based on a coupling constant calculation which, apart from other drastic assumptions, considers only the Fermi contact term contribution to the coupling.

The effect of a β substituent (one atom removed from the M-H fragment in which the coupling is measured) is smaller than the effect of a similar α substituent. Even so, the effect may be significantly larger than the errors in prediction mentioned above. We have therefore studied the couplings in some X methyl silanes, and have

TABLE 4

PREDICTED AND OBSERVED COUPLINGS $J(^{29}Si-H)$ in Silanes with more than one type of substituent (in cps)

Compound	J (predicted) ^e	J(observed)	Source
SiH ₂ FMe	-228.8	~222.3	8
SiHFMe,	-219.4	-215.8	10
SiHF ₂ Me	-283.2	-273.1	10
SiH ₂ ClPh	-234.4	-236.5	ħ
SiH ₂ CIMe	-227.5	- 229.0	8
SiHCIPh:	-231.8	-235.1	b
SiHCIMc,	- 218.3	- 222.3	h
SiHCIPhMe	- 224.9	- 229.2	ħ
SiHCl ₂ Ph	~ 286.8	- 288.5	b
SiHCl ₂ Mc	- 288.0	- 279.5	r
SiH ₂ BrPh	- 234.6	- 235.6	ь
SiH ₁ BrMe	- 227.6	-231.1	8
SiHBrMe,	- 218.4	- 225.0	10
SiHBr ₂ Me	- 278.7	- 280.8	10
SiH₂IMe	- 223.3	- 231.0	8
SiHIMe,	-214.6	- 224.8	10
SiHI ₂ Me	-263.3	~ 271.6	10
SiH ₂ PhMe	- 193.8	~ 193.0	Þ
SiHPhMe ₁	- 187.4	- 188.0	ð
SiH Ph ₂ Me	- 192.0	- 194.0	•

[&]quot; 2x values from Table 1. 5 Present work.

TABLE 5 PREDICTED AND OBSERVED COUPLINGS $J(^{13}C-H)$ in methanes with more than one type of substituent (in cps)

Compound	J (predicted)*	J(observed)	Source
CHCLF	219	220	11
CHCIF,	227	231	11
CH ₁ BrCl	175	179	12
CH ₃ Brl	176	176	12

[&]quot; α_K values from Table 1.

TABLE 6 CALCULATED AND OBSERVED COUPLINGS $J(^{29}Si-H)$ in some methyl silanes (in cps)

Compound	J(predicted)*	J (observed) ^b
CICH ₄ SiH ₄ Me	- 198.8	~ 198,5
CI_CHSiH_Me	208.6	~ 208.2
BrCH,SiHMe,	192.9	- 193.2
ICH,SiHMe,	~ 191.0	191.4
(CH,CH,),SiH	~ 178.8	-179.2

^{*} Eqn. 5 was used to caculate the effect of the β substituents. * Source: present work.

J. Organometal. Chem., 11 (1968) 423-427.

found that the effect of a β substituent X on the ²⁹Si-H coupling can be written:

$$\delta(\beta - X) = K \cdot \alpha_X \tag{5}$$

where K = 3.9 cps/eV. The value of $\delta(\beta - X)$ is added to the coupling calculated without considering the β substituent. Good agreement with the observed couplings is achieved, as can be seen from an inspection of Table 6.

ACKNOWLEDGEMENTS

Thanks are due to Mr. C. A. HOLDER of this laboratory, who prepared the compounds listed in Table 6, and to the S.R.C. for a research studentship.

SUMMARY

The effect of substituents on directly bonded $^{29}\text{Si-H}$ and $^{13}\text{C-H}$ coupling constants is discussed. The effect of a substituent X is characterised by a parameter α_X , a Coulomb integral or electronegativity. The relationship between α_X and the coupling constant in an X-substituted silane or methane has been calculated by the Pople-Santry method. The determination of α_X values is discussed. Values of α_X for nine substituents in silanes, and five in methanes are presented. The effects of β substituents on $^{29}\text{Si-H}$ couplings is described. $^{29}\text{Si-H}$ and $^{13}\text{C-H}$ couplings are calculated for more than seventy silanes and methanes, and the results are compared with the observed couplings.

REFERENCES

- R. Ditchfield, M. A. Jensen and J. N. Murrell, J. Chem. Soc., A, (1967) 1674.
- 2 J. A. POPLE AND D. P. SANTRY, Mol. Phys., 8 (1964) 1; 9 (1965) 311
- E. O. BISHOP AND M. A. JENSEN, Chem. Commun., (1966) 922.
- A. W. DOUGLAS, J. Chem. Phys., 40 (1964) 2413; E. R. MALINOWSKI AND T. VLADIMIROFF, J. Amer. Chem. Soc., 86 (1964) 3375.
- 5 E. A. V. EBSWORTH AND J. J. TURNER, J. Chem. Phys., 36 (1962) 2628.
- 6 H. J. CAMPBELL-FERGUSON, E. A. V. EBSWORTH, A. G. MACDIARMID AND T. YOSHIOKA, J. Phys. Chem., 71 (1967) 723.
- 7 C. H. VAN DYKE AND A. G. MACDIARMID, Inorg. Chem., 3 (1964) 1071.
- 8 E. A. V. EBSWORTH AND S. G. FRANKISS, Trans. Faraday Soc., 59 (1963) 1518.
- 9 H. DREESKAMP, Proc. XVIII Colloque Ampère, University of Leuven, 1964.
- 10 E. A. V. EBSWORTH AND S. G. FRANKISS, Trans. Faraday Soc., 63 (1967) 1574.
- 11 N. MULLER AND P. I. ROSE, J. Amer. Chem. Soc., 84 (1962) 3973.
- 12 V. S. WATTS AND J. H. GOLDSTEIN, J. Phys. Chem., 70 (1966) 3887.